RAG + ChainLit

RAG in action ..

RAG
  1. Clone the repo and navigate to the folder.

git clone https://github.com/jporeilly/Workshop--LLM.git
cd Workshop--LLM/Playground/chainlit
ls
  1. Ensure uv is installed.

Link to Installation of UV
  1. Check uv.

uv --version
uv 0.6.3
  1. Pull the Docker image and deploy container.

    docker pull qdrant/qdrant
    docker run --name qdrant -p 6333:6333 -p 6334:6334 \
    -v $(pwd)/qdrant_storage:/qdrant/storage:z \
    qdrant/qdrant
  2. Qdrant Docker container. Set Qdrant url in the .env file.

QDRANT_URL_LOCALHOST="xxxxx"
  1. Rename .env.example to .env

  2. Install the required packages - creates virtual env.

    uv sync

Qdrant Web UI

You can manage both local and cloud Qdrant deployments through the Web UI.

If you’ve set up a deployment locally with the Qdrant Quickstart, navigate to http://localhost:6333/dashboard.

If you’ve set up a deployment in a cloud cluster, find your Cluster URL in your cloud dashboard, at https://cloud.qdrant.io. Add :6333/dashboard to the end of the URL.

Link to Qdrant dashboard

Access the Web UI

Qdrant’s Web UI is an intuitive and efficient graphic interface for your Qdrant Collections, REST API and data points.

In the Console, you may use the REST API to interact with Qdrant, while in Collections, you can manage all the collections and upload Snapshots.

Qdrant UI

Qdrant Web UI features

In the Qdrant Web UI, you can:

  • Run HTTP-based calls from the console

  • List and search existing collections

rag collection

ChainLit

  1. Run the chainlit app.

uv run setup-rag.py
uv run chainlit run rag-chainlit-deepseek.py -p 8501
  1. Enter a question?

what is the score of the Open AI 01 mini and DeepSeek R1 zero on reasoning related benchmarks
RAG

Last updated